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The inertial lift on a rigid sphere in a linear shear 
flow field near a flat wall? 

By PRADEEP C H E R U K A T l  A N D  JOHN B. M c L A U G H L I N  
Department of Chemical Engineering, Clarkson University, Potsdam, NY 13699-5705, USA 

(Received 8 March 1993 and in revised form 18 August 1993) 

An expression which predicts the inertial lift, to lowest order, on a rigid sphere 
translating in a linear shear flow field near a flat infinite wall has been derived. This 
expression may be used when the wall lies within the inner region of the sphere’s 
disturbance flow. It is valid even when the gap is small compared to the radius of the 
sphere. When the sphere is far from the wall, the lift force predicted by the present 
analysis converges to the value predicted by earlier analyses which consider the sphere 
as a point force or a force doublet singularity. The effect of rotation of the sphere on 
the lift has also been analysed. 

1. Introduction 
A rigid sphere that translates parallel to a flat wall, in a fluid undergoing a 

uni-directional shear flow parallel to the wall, experiences a force in a direction normal 
to the wall. This transverse force is due to finite inertial effects. Since the Stokes 
equation and the boundary conditions are linear, a reversibility argument can be used 
to show that the Stokes solution does not predict any lift force (see Pozrikidis 1992). 
The effect of small but finite inertial terms in the Navier-Stokes equation has been 
studied by perturbation methods. Saffman (1965) analysed the problem of a rigid 
sphere translating in a direction parallel to the streamlines of a uni-directional 
unbounded linear shear flow field. Saffman applied the method of matched asymptotic 
expansions and obtained an expression for the lift force. Saffman’s expression was 
derived by considering the linearized (‘Oseen like’) equations of motion in the outer 
region and treating the sphere as a point force singularity to leading order. He assumed 
that the inertial terms due to shear are large compared to the inertial terms due to the 
slip velocity and that all the Reynolds numbers for the flow are small compared to 
unity. The Saffman lift arises due to inertial effects at distances that are O((v/G)i); i.e. 
the outer flow field (here G denotes the velocity gradient and v denotes the kinematic 
viscosity of the fluid). Saffman also showed that the effect of rotation of the sphere is 
to produce a lift force that acts in the same direction as the lift due to shear and 
that this contribution due to the rotation is a higher-order effect. The lift force due to 
rotation was shown to be equal to that given by Rubinow & Keller’s (1961) expression 
for the lift on a sphere translating and spinning in a quiescent unbounded fluid. 

Cox & Brenner (1968) analysed the case of a particle in a flow field bounded by a 
system of walls. In general, at low Reynolds numbers, asymptotic series for velocity 
and pressure fields are not uniformly valid, and different asymptotic representations 
for an inner region and an outer region that match in an appropriate overlap domain 
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have to be used. However, Cox & Brenner showed that, when the walls lie in the inner 
region of the asymptotic expansion (i.e. 14 v /V,  where 1 and V are the distance 
between the centre of the sphere and the wall and a characteristic velocity, respectively), 
for certain flows, the first-order field satisfies homogeneous boundary conditions on the 
particle and at infinity. They showed that the lift force, to lowest order, could be 
evaluated without considering the flow in the outer region. These authors obtained 
general expressions for the lift force in terms of Green’s functions by assuming that the 
sphere is very far from the wall and that the disturbance flow due to the sphere near 
the wall can be considered to be due to a Stokeslet (or a force doublet if the sphere is 
neutrally buoyant). These general expressions for the lift force can be applied if the 
Reynolds number is small and the walls lie in the inner region and the distance between 
the wall and the centre of the sphere is large compared to the radius of the sphere. 

Ho & Leal (1974) considered the lift on a neutrally buoyant, freely rotating sphere 
in a planar flow bounded by two walls and derived an expression for the lift force by 
the method of reflections. This expression is valid when the sphere is not very close to 
the walls. 

Cox & Hsu (1977) showed that the class of wall-bounded flows for which the lift 
force to the lowest order could be computed without considering an outer expansion 
includes wall-bounded linear shear flows and quadratically varying flows. These 
authors evaluated the Green’s functions in Cox & Brenner’s (1968) expressions and 
evaluated the lift force for a sphere sedimenting near a flat wall in a stagnant fluid and 
neutrally buoyant and non-neutrally buoyant spheres in a fluid undergoing a planar 
quadratically varying flow. Cox & Hsu’s (1977) expression can be used when the 
distance from the wall is large compared to the radius of the sphere. Vasseur & Cox 
(1976) extended this analysis to the case of flows bounded by two infinitely large flat 
parallel walls. 

Leighton & Acrivos (1985) evaluated the lift on a stationary sphere in a shear flow 
when the sphere touches the wall. They evaluated the lift to lowest order in Reynolds 
number. According to their analysis, the lift points away from the wall and varies as 
the fourth power of the radius of the sphere and the square of the velocity gradient. 

Drew (1988) applied perturbation techniques to evaluate the lift on a sphere 
translating in a shear field past a distant wall. The sphere was assumed to be very far 
from the wall and treated as a point force and it was also assumed that the inertial 
terms due to shear are large compared to the inertial terms due to the slip velocity of 
the sphere. The lift force was evaluated by solving an ordinary differential equation for 
the Fourier transform of the velocity field. 

Schonberg & Hinch (1989) analysed the lift on a neutrally buoyant sphere in a plane 
Poiseuille flow. The sphere was treated as a force dipole singularity and singular 
perturbation techniques were used to evaluate the inertial migration velocity of the 
sphere. A system of coupled differential equations with the multipole singularities 
replaced by jump conditions across the location of the particle were solved numerically 
to obtain the migration velocity in the Fourier space. The migration velocity was 
subsequently evaluated by numerical inversion of the Fourier transform. 

McLaughlin (1991) generalized Saffman’s (1965) analysis of unbounded shear flows 
to the case when the inertial effects due to slip are comparable with the inertial effects 
due to shear and derived an expression for the inertial lift on a sphere in an unbounded 
shear flow field. The only assumption made was that the Reynolds numbers are small 
compared to unity. According to this analysis, when the inertial effects due to the slip 
velocity are larger than the inertial effects due to shear, the lift force is much smaller 
than that predicted by Saffman’s (1965) expression. 
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T 1 

FIGURE 1 .  The coordinate system used to describe the motion of a rigid sphere near a flat wall. 

The inertial lift on a sphere translating in a shear flow bounded by a single flat 
infinite wall was analysed by McLaughlin (1 993). He derived an expression for the lift 
force by superposition of the disturbance flow created by the wall and the migration 
velocity due to an unbounded shear field. This analysis is applicable when the wall lies 
in the outer region or the inner region provided the distance between the wall and the 
sphere is large compared to the radius of the sphere. It was shown that the lift force 
converges asymptotically to the value predicted by Cox & Hsu’s (1977) expression 
when the distance from the wall decreases. This analysis has been extended to the case 
in which the sphere translates in a linear shear flow between two parallel flat walls by 
Cherukat, McLaughlin & Graham (1994). 

All the analyses for wall-bounded shear flows in which the sphere does not touch the 
wall assume that the distance between the sphere and the wall is large compared to the 
radius of the sphere and treat the particle as a point force or a force doublet. There are 
several situations of practical interest in which it is required to know the lift on a 
spherical particle when it is very close to a flat wall. In this paper we will consider the 
inertial lift on a rigid sphere translating in a shear flow near a flat wall when the 
distance between the sphere and the wall and the radius of the sphere are comparable. 
The lift force on rotating and non-rotating spheres will be analysed. 

The study of inertial lift at low Reynolds numbers has several practical applications. 
In the deposition of aerosol particles on a solid surface from a turbulent gas stream, 
it has been found (McLaughlin 1989) that the lift force is important in determining the 
trajectory of the particles in the viscous sublayer near the solid boundaries. The inertial 
lift is also important in fluid flow fractionation of particles in a suspension (see 
Johansson, Olgard & Jerqvist 1970). 

2. Asymptotic analysis 
Consider a rigid sphere of radius a near a flat wall in a Newtonian incompressible 

fluid of dynamic viscosity ,u and density p.  The distance between the wall and the centre 
of the sphere is 1. The parameter K is defined as 

K = a l l .  (2.1) 
In the absence of the sphere the fluid undergoes a uni-directional linear shear flow. The 
velocity gradient of this flow field in the direction normal to the wall is G, and G is 
assumed to be positive. The sphere moves with a velocity V,,, parallel to the wall and 
rotates with an angular speed w about an axis parallel to the wall and normal to the 
direction of translation. The slip velocity, Us, is defined by the equation 

V,,, = G1+ Us. (2.2) 
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In a reference frame (xi, xh, xh) with its origin at the centre of the sphere and that moves 
with the sphere (see figure l), the fluid at an infinite distance from the sphere has 
a velocity (G(l+xj)- K/spJ&il; where Sij denotes the Kronecker delta. If V is a 
characteristic velocity and a, the sphere radius, is chosen the characteristic length, a 
Reynolds number Re can be defined as 

Re = aV/u. (2.3) 
The distances and the velocities are made non-dimensional by dividing by u and V 
respectively. The Navier-Stokes equation, the continuity equation and the associated 
boundary conditions can be written in dimensionless form as 

wa 
ui = eijk it) Sj, xk when r = 1, 

ui = - (%) St, when x3 = - ( l /a) ,  

ui = [ T ( ' + x 3 ) - + ] S i 1  Ga 1 as r - t c o ,  

where rij is the dimensionless stress tensor and Y is the magnitude of the position 
vector. It is assumed that lRel + 1 and that the velocity and pressure fields can be 
expressed as asymptotic power series in Re; i.e. 

ui = ud0) +Re ui l )  + o(Re), (2.91 
and p =p'O)+Rep'l)+o(Re). (2.10) 
The stress tensor associated with the field (ukO),p(O)) is r$) and the stress tensor 
associated with the field (u;l) ,p(l))  is c$). 

The zeroth-order field (creeping flow solution) is a uniformly valid approximation 
and satisfies the following equations and boundary conditions : 

= eijk (7) - Sj2xk when r = 1, 

(2.11) 

(2.12) 

(2.13) 

ujO) = -(?)ail when x3 = - (l/u), (2.14) 

(2.15) 

The lift force due to the creeping flow field is zero. Hence, if a::) is integrated over the 
surface of the sphere, the x, component of the force will be zero. To compute the lift 
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to lowest order, it is necessary to integrate the first-order stress tensor over the 
surface of the sphere and determine the x3 component of the force. The first-order field 
satisfies the equations 

(2.16) 
7 (1) c?U,'"' 

ax1 ax1 

cB,l - q-, 

and the boundary conditions 
ujl) = 0 when Y = 1, 

(2.17) 

(2.18) 
u:') = 0 when x3 = -(I/a).  (2.19) 

The boundary condition (2.19) implies that the wall lies in the inner region. The inner 
region is that region in which the viscous effects dominate and the effect of inertia can 
be considered to be a small perturbation. In the outer region, inertial effects and 
viscous effects are comparable and the equations of motion can be approximated to 
leading order by an 'Oseen like' equation (see Proudman & Pearson 1957 and Saffman 
1965). Hence the first-order inner expansion does not satisfy the boundary conditions 
at infinity. However, it can be made to satisfy the boundary condition on the sphere. 
It can also be made to satisfy the boundary condition on the wall if the distance 
between the sphere and the wall is small compared to the lengthscale at  which the 
inertial effects become comparable with the viscous effects. For a sphere translating 
with a velocity Us in a quiescent fluid, inertial effects become comparable with viscous 
effects at distances which are O(L,), where L, is the Stokes length defined by 

L, = V/U,.  (2.20) 

If the sphere is translating in a strong shear field, inertial effects and viscous effects are 
comparable a t  distances which are of O(L,), where L, is the Saffman length defined 
by 

L,  = (V/G);. (2.21) 

These lengthscales can be derived by formally scaling the equations of motion to make 
the viscous terms and the inertial terms of the same order (see Proudman & Pearson 
1957 and Saffman 1965). The wall will lie in the inner region if the inequality 

is satisfied. 
In general, the first-order velocity field will not satisfy homogeneous boundary 

conditions at infinity and has to be determined by matching to the outer flow field. 
However, for a sphere translating in a stagnant fluid near the wall, it can be shown that 
the first-order velocity field satisfies homogeneous boundary conditions at  infinity (Cox 
& Brenner 1968). Though this is not true when the shear is non-zero, Cox & Hsu (1977) 
have shown that the force on the sphere to lowest order in R e  can be determined 
without considering the outer flow field. Cox & Brenner (1968) assumed that K < 1 and 
approximated the disturbance flow near the wall due to the sphere as due to a point 
force and a force doublet and derived an expression for the lift force in terms of Green's 
functions. In this analysis we will consider the case for which the parameter K is O( 1). 
Hence, the sphere cannot be treated as a point singularity. 

I < min (Ls,  LG) (2.22) 

The dimensionless lift force on the sphere, F,, is given by 

(2.23) 
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where the surface integral is evaluated over the surface of the sphere. It can be shown 
using the generalized reciprocal theorem that the surface integral in equation (2.23) can 
be expressed as a volume integral involving the creeping flow solution uio) and another 
creeping flow solution up) ,  where uIo) is the creeping flow solution when the sphere 
translates towards the wall with unit velocity in a quiescent fluid (see Cox 1965; Cox 
& Brenner 1968; Ho & Leal 1974; Leighton & Acrivos 1985). Using this technique 
the dimensionless lift force can be expressed as 

(2.24) 

where the integral is evaluated over the entire space occupied by the fluid. It can also 
be shown that this integral is convergent (see Leighton & Acrivos 1985). Thus, the lift 
force to lowest order can be computed if the fields ujo) and ujo) are known. The 
dimensional lift force, Fi, can be expressed as 

(2.25) 

2.1. Computation of the lift force 
The creeping flow solution for a rigid sphere in a three-dimensional shear flow field 
moving in the presence of an arbitrarily located second rigid sphere has been derived 
by Lin, Lee & Sather (1970). This general solution can be used to evaluate the flow 
fields uio) and ~1'). The solution is given in terms of a spherical bi-polar coordinate 
system ( c , ~ ,  q5) and an associated cylindrical polar coordinate system (p ,  z ,  q5). The 
bi-polar coordinate system is defined by 

(2.26) 

(2.27) 

(2.28) 
(2.29) 

The coordinate surface 5 = a! corresponds to the sphere (the centre of the sphere being 
located at z = 1, p = 0) and the coordinate surface 6 = 0 corresponds to a sphere of 
infinite radius which coincides with the wall. The cylindrical polar components 
(zip, u4, uz) of the velocity field uio) are given in the following functional form: 

up = up( p? z, AG,  A,> A s )  cos $ 9  (2.30) 
uq$ = U $ ( p ,  z, Aw3 A s )  sin $ 5  (2.31) 
u, = uc(p, z ,  AG,  A,,,, A s )  cos 4, (2.32) 

where A ,  = Ga/ V,  A,,, = wa/ V, and As  = K p h /  V. (2.33) 
If the Reynolds numbers ReG and Re, are defined as 

Re, = Ga2/u (2.34) 
and Re, = d / u  (2.35) 
then A ,  = Re,/Re, and A ,  = Re,,,/Re. (2.36) 
The functions Up, U$ and Uz depend on AG, A,,, and A ,  and are infinite series in the 
coordinates 6 and 7. The coefficients of the terms in these series depend only on the 
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value of l l a .  The number of terms that have to be retained in these series is not known 
a priori. The coefficients of the terms in the series can be determined by truncating the 
series after a certain number of terms and computing the coefficients. To ensure that 
a sufficient number of terms have been retained, the number of terms in the series 
should be increased and the magnitudes of the coefficients should be checked to see if 
they are sufficiently small and can be neglected. The number of terms that have to be 
retained in the series to achieve sufficient accuracy increases as l / a  becomes small. 

The integral in (2.24) can be expressed in cylindrical polar coordinates and the 
dimensionless lift force can be expressed as 

The expressions for the cylindrical polar components of the velocity fields can be 
substituted in (2.37) and the integration in the #-coordinate can be done analytically. 
Thus the expression for the dimensionless lift force reduces to 

Equation (2.38) can be written compactly as 
4 = ReI, 

where I is the integral defined by 
(2.39) 

The integral, I, has to be evaluated numerically to obtain the lift force. 

3. Discussion 
The dimensionless lift force was computed by evaluating the two-dimensional 

integral in (2.40) by numerical quadrature. The two-dimensional integration was done 
using the IMSL subroutine DTWODQ. This subroutine computes a two-dimensional 
integral using a Gauss-Kronrod rule. The integrals were evaluated to a relative 
precision of one percent. 

If the sphere is very far from the wall, a positive value of Us implies that the sphere 
is leading the fluid (for example, a negatively buoyant sphere in a downward-moving 
shear flow) and a negative value of Us implies that the sphere lags the fluid (for 
example, a positively buoyant sphere in a downward-moving shear flow). When the 
distance between the wall and the sphere is large compared to the radius of the sphere, 
Us is the velocity with which the sphere would sediment in an unbounded quiescent 
fluid. 

A sphere which is suspended in a shear field will rotate. As a leading-order 
approximation it can be assumed that the angular velocity of a torque-free sphere in 
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a linear shear flow field is given by Goldman, Cox & Brenner’s (1967) expression. The 
effect of inertia of the angular velocity would result in a correction which is O(Re). This 
O(Re) correction in angular velocity would give rise to an o(Re) contribution to the lift 
force which is formally of higher order than the lift force predicted by equation (2.38). 
Thus, the dimensionless lift force can be assumed to depend only on A,, A ,  and I/a. 
The cases for which the lift force has been studied are classified into those with a non- 
zero value of Us and those for which U, is zero. 

3.1. Non-zero values of Us 
When Us =l 0, V = Us, and the Reynolds number in (2.3) is defined by 

Re = U s a / v .  (3.1) 
The condition that the wall lies in the inner region can be stated in terms of the 
Reynolds numbers as 

Re, < K, (3.2) 

and Re, < K’. (3.3) 
The functions Up, Ud and Uz depend only on A,  and I/a for freely rotating and non- 
rotating spheres. Thus the integral, I ,  is a function of l /a  and A’. Positive values of A ,  
correspond to positive values of Us and vice versa. Tables 1 and 2 contain the values 
of the integral, I, for l /a  between 1.1 and 20.0 and A ,  between - 5.0 and 5.0 for a non- 
rotating sphere. 

The case for which A ,  is equal to zero in table 1 corresponds to a non-rotating 
sphere sedimenting in a stagnant fluid. Cox & Hsu’s (1977) formula for the dimension- 
less lift force on a rigid sphere sedimenting near a flat vertical wall in a stagnant fluid 
is 

The value of I obtained by numerically evaluating the integral in (2.40) converges to 
within 1 .O % of the value predicted by (3.4) for l /a  greater than 6. 

When the fluid is undergoing a shear flow, the value of A ,  is non-zero. Cox & Hsu 
(1977) obtained an analytical expression for the lift force when the sphere is far from 
the wall. The expressions for the integral, I ,  for a sphere in a shear field according to 
Cox & Hsu’s (1977) analysis are 

I = 1871132. (3.4) 

(3.5) 
1 8 ~  6671 I 3 6 6 ~  I = - - - A  - + -  
32 64 ‘ ( a )  576 ’’ 

for a non-rotating sphere and 

1 8 ~  667t 1 330.n I = - - - A  - + -  
32 64 ‘ ( a )  576 ’’ 

for a freely rotating sphere. In figure 2, I has been plotted as a function of AG for 
l /a  = 1.1, 1.5, 5.0 and 20.0 for a non-rotating sphere. The values predicted by (3.5) are 
also shown in this figure. It can be seen from figure 2 that the percentage difference 
in the value of I obtained using (2.40) and that obtained using Cox & Hsu’s expression 
decreases as l / a  becomes large. Cox & Hsu’s expression is a leading-order expression 
in K as K + 0. When K is O( I), the near-wall effects alter the lift force as can be seen from 
figures 2 (a)  and 2(b). 

An interesting case for a non-rotating sphere is the one corresponding to A ,  = - 1 .O. 
The value of I for this case for distances less than 3 sphere radii is shown in figure 
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! l a  A ,  = 0 0.01 0.10 0.5 
1.1 1.728 1.671 1.164 - 0.706 
1.5 1.735 1.667 1.057 - 1.255 
2.0 1.756 1.672 0.933 - 1.940 
3.0 1.779 1.665 0.655 -3.410 
4.0 1.788 1.643 0.353 -4.961 
5 .O 1.790 1.614 0.039 - 6.537 

10.0 1.790 1.450 - 1.567 - 14.560 
20.0 1.790 1.119 -4.804 - 30.729 

I l a  A ,  = 1.5 2.0 3 .O 4.0 
1.1 -2.623 -2.104 1.888 9.821 1 
1.5 -4.166 -4.096 - 0.896 6.379 
2.0 -6.187 -6.739 -4.700 1.535 
3.0 - 10.595 - 12.581 - 13.343 -9.826 
4.0 - 15.243 - 18.777 -22.630 - 22.196 
5.0 - 19.991 -25.116 -32.161 - 34.934 

10.0 - 44.120 - 57.333 -80.619 -99.723 
20.0 -92.670 - 122.104 - 177.89 - 229.583 

TABLE 1. The integral, I ,  for a non-rotating sphere (A,  > 0). 

1 .o 
-2.157 
-3.219 
-4.587 
- 8.040 
- 10.638 
- 13.798 
- 29.864 
-62.213 

5.0 
21.693 
17.632 
11.961 
- 2.030 
- 17.475 
- 33.436 
- 114.643 
- 277.169 

l / a  A ,  = -0.01 -0.1 -0.5 -1.0 -1.5 
1.1 
1.5 
2.0 
3.0 
4.0 
5.0 

10.0 
20.0 

! l a  
1.1 
1.5 
2.0 
3.0 
4.0 
5.0 

10.0 
20.0 

1.788 2.335 5.150 9.557 14.947 
1.805 2.455 5.741 10.766 16.811 
1.841 2.621 6.500 12.293 19.133 
1.895 2.947 8.044 15.378 23.783 
1.934 3.266 9.608 18.501 28.465 
1.968 3.584 11.187 21.652 33.185 
2.125 5.182 19.181 37.621 57.107 
2.440 8.404 35.313 69.873 105.459 

A ,  = -2.0 - 3.0 -4.0 - 5.0 
21.323 37.030 56.676 80.263 
23.873 41.052 62.319 87.657 
27.022 45.944 69.058 96.365 
33.256 55.413 81.849 112.564 
39.501 64.787 94.360 128.221 
45.785 74.191 106.868 143.818 
77.637 121.837 170.219 222.78 3 

142.068 218.365 298.764 383.263 
TABLE 2. The integral, I ,  for a non-rotating sphere (A,  < 0). 

3.  Since V,,, = Us+ Ga(l/a), as / /a+ 1, V,,, - to  and IReJ + Re,. Leighton & Acrivos 
(1985) derived an expression for the lift force on a stationary sphere in a linear shear 
flow when the sphere touches the wall (i.e. l / a  = 1.0). According to Leighton & 
Acrivos’ analysis 

I = 9.22. (3.7) 
From figure 3 it can be seen that the integral, I ,  tends to the Leighton-Acrivos limit as 
l / a  -f 1. The lift force when l / a  is exactly equal to 1 cannot be evaluated using a bi-polar 
coordinate system since the coordinate system becomes singular. Leighton & Acrivos 
derived (3.7) using a tangent plane coordinate system. The present analysis indicates 
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FIGURE 2.  The integral, I ,  as a function of A ,  for a non-rotating sphere when (a) Z/a = 1.1; 
(b)  1.5, ( c )  5.0, (d )  20.0. ---, (3 .5);  -, (2.40). 

l/a 

FIGURE 3. The integral, I ,  when A ,  = - 1.0 as a function of I la:  
+, Leighton & Acrivos (1985); -, (2.40). 
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! l a  A ,  = 0.01 0.1 0.5 1 .0 1.5 
1.1 
1.5 
2.0 
3.0 
4.0 
5.0 

10.0 
20.0 

l l a  
1.1 
1.5 
2.0 
3.0 
4.0 
5.0 

10.0 
20.0 

1.664 1.087 -1.127 -3.098 -4.184 
1.656 0.965 - 1.748 -4.312 - 5.954 
1.662 0.829 - 2.499 -5.810 -8.175 
1.654 0.537 -4.049 -8.918 - 12.823 
1.630 0.225 -5.639 - 12.104 - 17.606 
1.600 -0.931 - 7.245 - 15.297 -22.439 
1.435 -1.711 - 15.329 - 31.507 -46.745 
1.104 -4.956 - 31.530 - 63.917 -95.381 

A ,  = 2.0 3.0 4.0 5.0 
-4.386 -2.133 3.659 12.993 
- 6.677 -5.361 -0.365 8.314 
-9.595 - 9.600 -5.826 1.729 
- 15.767 - 18.771 - 17.923 - 13.230 
- 22.146 -28.339 - 30.678 -29.166 
-28.098 -38.038 -43.643 -45.409 
-61.043 -86.819 -108.844 -127.103 
- 125.925 - 184.238 -238.871 -289.804 

TABLE 3. The integral, I, for a rotating sphere ( A ,  > 0). 

l l a  A ,  = -0.01 -0.1 -0.5 - 1.0 - 1.5 
1.1 
1.5 
2.0 
3.0 
4.0 
5.0 

10.0 
20.0 

l l a  
1.1 
1.5 
2.0 
3.0 
4.0 
5.0 

10.0 
20.0 

1.796 2.407 5.471 10.098 15.610 
1.814 2.542 5.974 11.464 17.708 
1.850 2.721 6.957 13.103 20.193 
1.906 3.061 8.071 16.325 25.040 
1.946 3.389 10.178 19.531 29.846 
1.981 3.712 11.785 22.739 34.65 1 
2.139 5.323 19.843 38.838 58.774 
2.455 8.052 36.01 1 71.166 107.242 

A ,  = -2.0 -3.0 -4.0 - 5.0 
22.007 37.803 56.447 78.977 
24.874 41.965 62.737 87.191 
28.230 47.137 69.825 96.293 
34.718 56.958 83.046 112.982 
41.124 66.569 95.863 129.007 
48.023 76.147 108.098 144.890 
79.648 124.215 172.542 224.625 

144.242 221.008 301.463 385.610 
TABLE 4. The integral, Z, for a rotating sphere ( A ,  < 0). 

that Leighton & Acrivos’ expression should give a fairly accurate value for the lift force 
even when the sphere does not touch the wall provided Z/a is close to unity. 

The values of the lift force for a freely rotating sphere as a function of A ,  and l /a  
when Us is non-zero are given in tables 3 and 4. As mentioned in 93,  Goldman et al.’s 
(1967) expression was used to estimate the angular velocity of the sphere. The values 
of I for a freely rotating sphere for l / a  = 1.1 and l / a  = 5.0 are plotted as a function of 
A ,  in figure 4. The effect of rotation is very small and becomes important only when 
the shear is large and the sphere is close to the wall. 
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FIGURE 4. The integral, I as a function of AG for (a) l / a  = 1 . 1 ,  and (b) l /a  = 5.0, rotating and 
non-rotating spheres: ---, (2.40) for a non-rotating sphere; -, (2.40) for a rotating sphere. 

2.5 3‘01 

0 5 10 15 20 25 
I/a 

FIGURE 5. The integral, I, as a function of l /a  when Us = 0: ---, (3.10); -, (3.9); 
0, (2.40) for a non-rotating sphere; 0, (2.40) for a rotating sphere. 

3.2. L f t  force when Us = 0 
This case corresponds to a neutrally buoyant sphere when I/a --f co. The characteristic 
velocity is Ga and the Reynolds number defined in (2.3) is 

Re = Ga2/v.  (3.8) 

The integral, Z, as a function of l / a  for rotating and non-rotating spheres as a function 
of l /a  is shown in figure 5. The value of Z varies very little with I/a and the lift force 
points away from the wall.The effect of rotation is to decrease the lift force. According 
to Cox & Hsu’s expression, the integral, Z, for a neutrally buoyant sphere is given by 

3667~ I = -  
576 ’ (3.9) 
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for a non-rotating sphere and 

(3.10) 

for a freely rotating sphere. The lift force predicted by (2.38) converges rapidly to the 
value predicted by (3.9) and (3.10). 

4. A simple equation for the lift force 
To evaluate the lift force on a sphere near a wall, the integral in (2.38) has to be 

evaluated numerically. This can be computationally expensive in particle trajectory 
calculations especially when there are a large number of particles very close to the wall. 
Hence it is useful to obtain a simple equation for the lift force. The functions U,,, a,, 
and 0, depend linearly on A G .  Hence the integral, I ,  defined by (2.40) can be expressed 
as a quadratic function of A,. The coefficients of this second-degree polynomial in A,: 
can be obtained easily by the least-squares method. The coefficients obtained in this 
manner are exact since the lift integral has an exact quadratic dependence on A G .  The 
coefficients of A:, A;  and A: depend on K. These coefficients can be expressed as a 
function of K and the unknown coefficients of the powers of K were computed by 
nonlinear minimization and the following equation was obtained for a non-rotating 
sphere : 

I = [ 1.7716 + O.2I6O~-O.7292~~ + 0.4854~~1 

[,'2:97+ 1.1450+2.0840~-0.9059~~ A ,  I -~ 

+[2.0069+ 1 .0575~-2 .4007~~+ 1.3174K3]/1L. (4.1) 

Equation (4.1) fits the data in tables 1 and 2 very accurately. For example, in the 
Leighton-Acrivos limit, the value of I predicted by (4.1) is 9.28. In a similar manner, 
it was found that the equation 

I =  [1.7631+0.3561~-1.1837~~+0.845163~~] 

- [ + 2.6760 + 0.8248~ - 0.46 1 6 ~ ~  AG 
K 1 

+[1.8081+0.879585~- 1 .9009~~+0.98149~~]A:  (4.2) 

fits the data in tables 3 and 4 for a freely rotating sphere very well. Equations (4.1) and 
(4.2) can be used to evaluate the lift force without actually computing the integral, I ,  
numerically. 

5. Conclusion 
Equation (2.38) predicts the lift force to O(Re) when Re < 1 and accounts for the 

finite size of the sphere. It can be used for any distance, 1, between the wall and the 
sphere provided 1 < min (u/U,, (v/G)i). Cox & Brenner (1968) also used the technique 
mentioned in $2 to express the lift force as a volume integral involving two creeping 
flow solutions. In the present analysis, the exact creeping flow solutions have been used 
while evaluating the volume integral. The integrand in (2.24) is u ~ " ) ( u : O )  auio)/?x,). Cox 
& Brenner (1968) neglected the contributions to ujo) aui")/ax, that result in terms which 
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are O(K) in the expression for the lift force. Such terms are insignificant when the 
distance between the sphere and the wall is very large compared to its radius. The 
volume integral was evaluated over the entire space occupied by the fluid while 
neglecting the finite size of the sphere. The disturbance velocity was approximated as 
that due to a point force singularity whose strength is equal to the Stokes drag and a 
force dipole singularity. This gives an expression which is valid to O ( K - ~ )  for a non- 
neutrally buoyant sphere and to O(K’) for a neutrally buoyant sphere when K is very 
small compared to unity. It should be noted that this expression does not contain all 
the terms that are at least O(K”). Thus, even though the percentage difference between 
the value of I obtained by numerically evaluating the integral (2.40) and that obtained 
using (3.5) and (3.6) decreases as K + O ,  the absolute difference does not change 
considerably. The difference in the lift force predicted by (2.38) and (3.5) and (3.6) 
increases as K becomes O(1). The difference in the lift predicted by (2.38) and (3.5) and 
(3.6) is due to terms which are of higher order in K than those which have been retained 
in Cox & Brenner’s (1968) and Cox & Hsu’s (1977) expressions. The value of the lift 
force obtained by numerically evaluating the integral in (2.24) indicates that these 
higher-order terms are important when the sphere is very close to the wall. 

Lovalenti has derived an expression for the lift force for small K and arbitrary 
angular speed by modifying the results derived by Cox & Brenner (1968) and Cox & 
Hsu (1977) (see the Appendix by Lovalenti). The disturbance flow was approximated 
as that due to a point force singularity, whose strength is the Stokes drag multiplied 
by a factor which takes into account the O(K) correction to the Stokes drag due to the 
presence of the wall, and a force dipole. Instead of evaluating the integral over the 
entire space occupied by the fluid, the finite size of the sphere was also taken into 
consideration. This results in an expression which is valid when K < 1 and contains all 
the terms which are at least O(K’) and has the exact O(1) asymptotic form as K + O .  
When expressed in terms of the integral, I ,  defined by (2.40), Lovalenti’s expression 
becomes 

(5.1) 
18n 66n 1 374n 366n 
32 64 K 1056 

I=--- [ -+- ]A,++l+O(K) 

for a non-rotating sphere. The value of I obtained using (5.1) agrees very well with the 
data in tables 1 and 2 when the sphere is several radii from the wall. This can be found 
by comparing the leading-order behaviour of (4.1) as K + 0. The coefficients of the 
terms which are at least O( 1) as K + 0 in (4.1) agree very well with the coefficients of 
similar terms in (5.1). 

This work was supported by the US Department of Energy through grant DE- 
FG02-8813919. The computations were done on IBM-RISC workstations in the AVS 
laboratory at Clarkson University. The formulas in Lin et aZ.’s (1970) paper were 
obtained from the Editor, Journal of Fluid Mechanics. Authors P.C. and J.B.M. 
wish to thank Professor D. T. Leighton and Mr Gokul Krishnan for pointing out 
that an equation for the lift force could be easily obtained by regression of data in 
tables 1 4 .  
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Appendix A. The lift force on a sphere in a simple shear flow near a plane 
wall 

By P. M.  Lovalenti 
Department of Chemical Engineering, California Institute of Technology, Pasadena, 

CA 91125, USA 

Using existing results for a sphere translating near a flat wall in a shear flow at low 
Reynolds number, we shall derive the lift force on a sphere of radius a when its distance 
from the wall 1 satisfies a .g 1 .g min (v/us, (V/G)+) ,  (A 1) 
where v is the kinematic viscosity of the fluid, Us is the magnitude of the sphere’s slip 
velocity relative to the fluid, and G is the shear rate of the imposed flow. The lower 
bound in the above inequality allows the sphere’s weak interaction with the wall to be 
adequately accounted for by a point-force plus force-dipole description of the sphere. 
The upper bound provides for the condition that the wall is in the inner region of 
expansion and allows for the use of regular perturbation techniques. Our goal is to 
collect all terms up to O(1) in inverse powers of the particle distance from the wall 
1 while neglecting those of higher order since they decay as the sphere moves farther 
from the wall. 

For a steady, planar, simple shear flow in the 2-direction which increases in the 1- 
direction, the disturbance flow u’ created by the particle translating with velocity Us in 
the 2-direction relative to the shear flow evaluated at the sphere centre is described by 
the Navier-Stokes equations as 

-All’), (A 3) 
U * U ’  = 0, (A 4) 

where p and p are the viscosity and density of the fluid, and the coordinate system has 
its origin at  the centre of the sphere. Here, the wall surface is at r1 = -1  on which the 
fluid satisfies the no-slip boundary condition. 

Now since a reversibility argument demonstrates that the Stokes equations result in 
no lift force perpendicular to the wall, the existence of a lift force must be due solely 
to inertial effects. Then the general reciprocal theorem provides the following 
expression for the lift force 4 in the 1-direction: 

where V, represents the entire volume of fluid surrounding the sphere and bounded by 
the wall. Here, u1 is the Stokes velocity field produced by the sphere, a distance 1 from 
the wall, translating with unit velocity in the 1-direction in a quiescent fluid (in the 
absence of a shear field). 

Owing to condition (A l), we can approximate 4 by replacing u‘ with the 
Corresponding Stokes solution for the disturbance flow, u, as a regular perturbation 
approach : 

4 J-v.m.v,dv. (A 6) 

The errors in the above expression are of higher order in Reynolds number as can be 
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seen from both a regular and singular perturbation analysis. The integral will remain 
convergent because far from the particle-wall system the disturbance appears as that 
due to a dipole and thus decays as O(r-2) making the integrand O(r-*). 

The contributions to the lift force can be divided into two sources: that due to the 
presence of the wall and that due to the finite size of the sphere that would exist in the 
absence of the wall. The former lift force contribution was evaluated by Cox & Hsu 
(1977), while the latter was evaluated by Saffman (1965). The results from Cox & Hsu 
were obtained by using a point-force plus force-dipole description of the sphere’s 
disturbance velocity, a representation which is valid under the assumption that the 
sphere is far from the wall. In their analysis the nonlinear term off, u.Vu, is neglected 
since it produces a contribution to the lift which can be shown to decay as O(1-I). Thus, 
f c a n  be treated as being linear in 8 and the point force and force dipole can be 
accounted for separately. If the point-forced velocity field is used in (A 6) for both u 
and ul, two terms are obtained. From the work of Cox & Hsu, the first is due to the 
first term on the right-hand side of (A 2): 

E , u a L i ,  32 (T) , 

and the second from the last two terms of (A2) 

It is important to note that these two terms were computed using a point force of 
magnitude equal to the Stokes drag on a sphere in an unbounded domain, - 6xpaUs. 
The term given by (A 8) must be corrected to ensure that we obtain all terms which do 
not decay for large 1. This is accomplished by including a modification of the point 
force due to the presence of the wall. For motion parallel to the wall the magnitude of 
the point force should have a multiplicative factor of (1 +9a/161), while for motion 
perpendicular to the wall it should have a factor of ( 1  + 9a/81) (see Happel & Brenner 
1965). If these factors are used in (A 6), the corrected term of (A 8) becomes 

When the force-dipole description of the sphere is used for u in the last two terms of 
(A2), while the point-force description is used for u, ,  Cox & Hsu found contributions 
to the lift force from (A 6) given by 

pa2G (q) , 
6n(6 1) 
144x4 

for a sphere prevented from rotating, and 

6n(55) pa2G (e) , 144 x 4 , ,  

for a sphere free to rotate. 
In evaluating the above results ((A 7, (A 8), (A lo ) ,  and (A 1 l)), Cox & Hsu 

performed the integration in (A 6) by extending the volume of integration to the entire 
volume of space, ignoring the finite size of the sphere. The error made in doing this 
yields contributions to the lift force which do not decay for large 1. These contributions 
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may be evaluated by neglecting the presence of the wall and using the disturbance 
Stokes flow fields for the motion of the sphere in an unbounded domain. This is carried 
out by first evaluating the integral (A 6) over an unbounded fluid domain outside the 
sphere with the velocity fields replaced by those for the sphere motion in an unbounded 
domain (these fields are well known), while taking care not to include the point-force 
or force-dipole contributions from the above four terms already evaluated by Cox & 
Hsu. Then, in order to correct the error in the Cox & Hsu analysis, one must subtract 
the integral over the volume of the sphere of these excluded point-force and 
force-dipole contributions. The result yields the second-order Saffman lift force 
(Saffman 1965), which is determined from a consideration of the inner expansion 
problem : 

where D is the magnitude of the angular velocity of the sphere in the 3-direction. 

force to leading order in Reynolds number and appropriate when a/Z < 1 : 
If we now combine all these contributions we can obtain an expression for the lift 

+O(a/ l ) ,  (A 13) 6n(61) +- 144 x 4 

for a sphere prevented from rotating, and for a sphere free to rotate: 

6x(55) 
144 x 4 +-pua2G (T) + &paU, rq) + O(a / l ) ,  (A 14) 

where we have set 52 = G/2 for a freely rotating sphere.? As an added note, the 
expression for a reversal in the direction of the shear flow or the slip velocity can be 
obtained by simply changing the sign of G or U, in the above two expressions. Also, 
the corresponding expression for an arbitrary sphere rotation speed can be found by 
a linear interpolation of (A 10) and (A 11) since this contribution scales linearly with 
the dipole and the dipole varies linearly with the angular speed of the sphere. Thus, for 
arbitrary rotation speed the lift force is given by 

32 

+- 6x(61) pa2G($)( 1 144 x 4 

7 This value of the rotation speed is correct for zero Reynolds number in the absence of any 
bounding walls. The corrections for finite Reynolds number or for walls will bring only a smaller- 
order correction to the lift force than those already provided. 
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